国際宇宙ステーション船外で保管した大麦種子の生存能力

<u>杉本学</u>¹, 石井 誠¹, 森 泉¹, Shagimardanova Elena¹, Oleg Gusev², 木原 誠³, 保木健宏³,

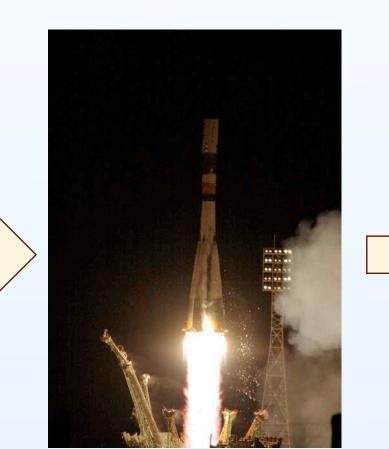
Vladimir Sychev ⁴, Margarita Levinskikh ⁴, Natalia Novikova ⁴, Anatoly Grigoriev ⁴

1岡山大学資源植物科学研究所,2農業生物資源研究所,3サッポロビールバイオ研究開発部,

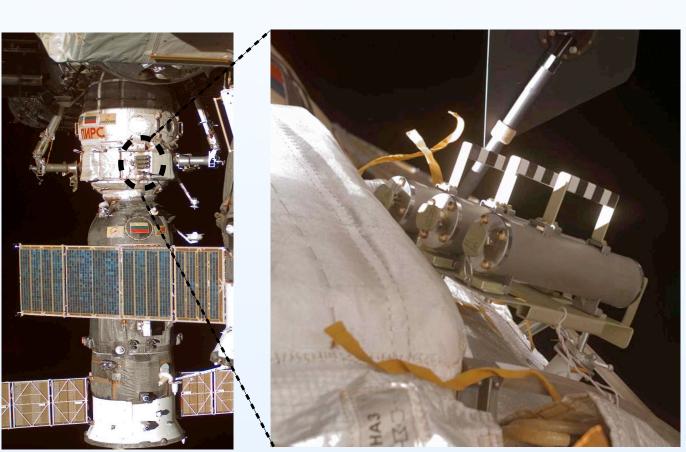
4ロシア科学アカデミー生物医学研究所

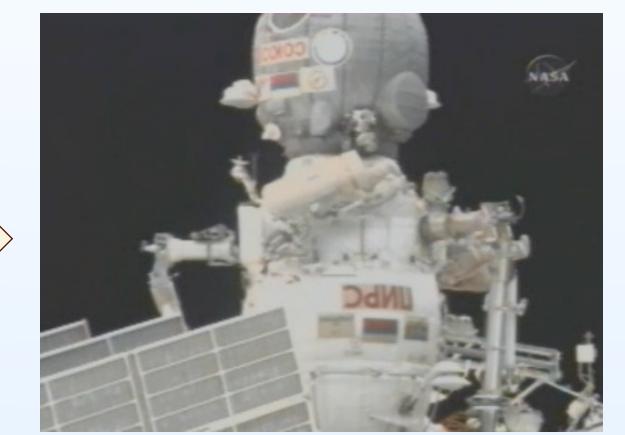
目的: 宇宙空間で種子は長期間保管できるのでしょうか?

宇宙空間で長期間保管した種子に変化はあるのでしょうか?


宇宙環境が種子の生存能力に及ぼす影響を明らかにする目的で、国際宇宙ステーション(ISS)船外に大麦種子を保管し、その発芽率、生育、農 業形質、品質、遺伝子を調べました。

方法:

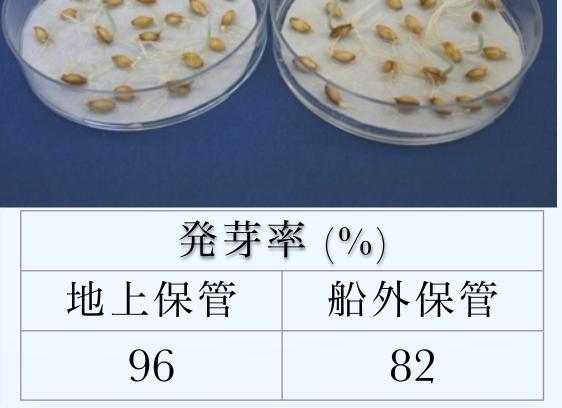

醸造用大麦「はるな二条」種子を封入した布袋をプラスチックシャーレに入れ、金属筒にセットしました。金属筒をISSロシアドッキング室 「ピアース」船外に設置し、温度や湿度等のコントロールを全く行わない状態で13ヶ月間放置後、地上に搬送しました。地上で4°C、乾燥状態 で同期間保管した種子を対照としました。

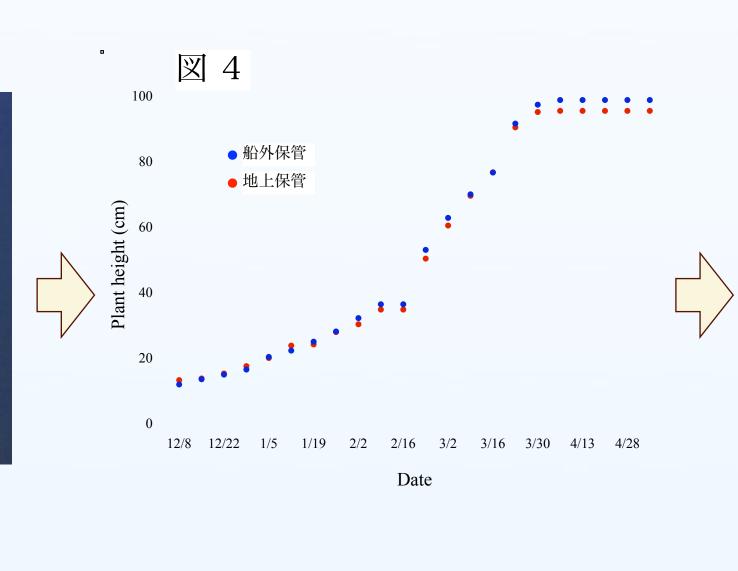

種子を封入した布袋をプラスチック シャーレに入れ、金属筒にセット。

2007年4月15日、ソユーズ宇宙 船により種子をISSに搬送。

2007年6月6日、ISSの ピアース船外に種子を設置。

2008年7月15日、種子をISS船内に回収。




2008年10月24日、ソユーズ宇宙船で種子を 地上に搬送。

結果:

- 船外保管後のプラスチックシャーレは大きく変形していました。船外保管中の放射線量は約200mGy(ミリグレイ)、 温度は-20~+90°Cでした。(図1)
- 船外保管後の種子は重量が19%減少したが、発芽率は82%と顕著な低下はありませんでした。(図2,3)
- 発芽した種子(親種)は地上保管種子(親種)と同様に生育し、農業形質に有意差はありませんでした。(図4,5,5,表1)
- 収穫した船外保管種子(子種)と地上保管種子(子種)の含水率、β-グルカン量、発芽率に差はなく、農業形質に有意差はありません でした。(図6, 7, 表1)
- 船外保管種子(親種)由来葉から抽出したDNAを用いた分析では、特異的なDNAフラグメントの出現や消失はありませんでした。

会	
含水量 (%) 10.5	10.6
β-グルカン(%) 4.0	4.2
発芽率 (%) 98	98

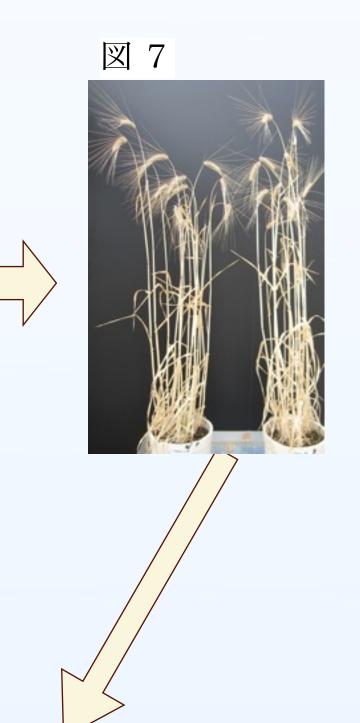


図 8. 16組のプライマーを用いたAFLP分析によるDNAフラグメント。1,地上保管大麦;2-4,船外保管大麦

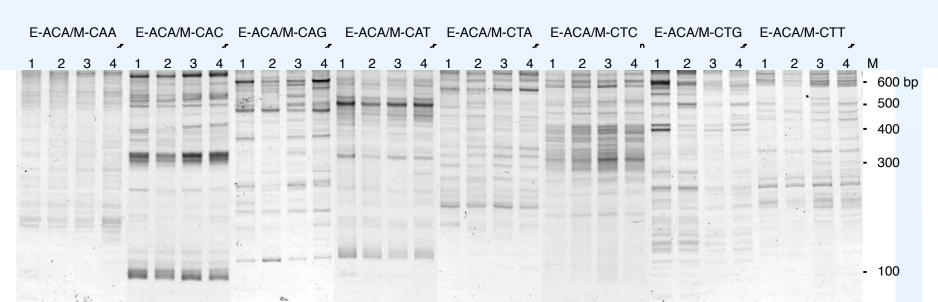


表 1. 宇宙保存大麦種子の農業形質

農業形質	親種		子種	
	地上保存	船外保存	地上保存	船外保存
稈長 (cm)	82.4 ± 4.1	$85.3\pm1.6^{\rm \ NS}$	83.9 ± 3.5	$84.3 \pm 3.0^{\mathrm{N}}$
穂長 (cm)	6.4 ± 0.2	$6.2 \pm 0.1^{\rm \ NS}$	5.2 ± 0.1	$5.3 \pm 0.1^{\rm NS}$
穂数	8.8 ± 0.4	$8.8\pm0.5^{\rm \ NS}$	11.1 ± 1.9	$11.3 \pm 0.7^{\circ}$
穂当たり粒数	27.0 ± 0.4	$27.1 \pm\! 0.4^{\rm NS}$	23.8 ± 0.6	$24.1 \pm 0.2^{\circ}$
稔率 (%)	93.8 ± 0.01	$94.6\pm0.02^{\rm \ NS}$	96.6 ± 1.7	94.8 ± 1.6^{-1}
1000 粒重 (g)	48.6 ± 0.2	$48.8\pm0.8^{\rm \ NS}$	39.5 ± 0.6	$39.5 \pm 1.0^{\text{N}}$
NS 有意差無し (p >	0.05).			

結論: 大麦種子は金属容器内で少なくとも13ヶ月間は農業形質、品質、DNAに変化無く 宇宙空間で保管できる可能性が明らかとなりました。